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ABSTRACT 

The discrete finite Fourier transform can be 

regarded as a matrix operation, since each element 

of one member of the pair is a linear combination of all 

the elements of the other member.  The N-by-N cyclo- 

tomic matrix (W) .k = N'*   exp [-Zirijk/N] which per- 

forms the transform is unitary and has eigenvalues 

A =+_ 1 and +_  i. Clearly the eigenvectors of W are 

these functions which are their own finite Fourier 

transform multiplied by + 1 or ^ i. One class of such 

functions are aliased Hermite functions, which are 

related to the theta functions. 

We discuss analytically some curious properties of 

these functions, which were suggested by numerical calcu- 

lations of the eigenvectors. 

We demonstrate a remarkably simple relation 

between a periodic function of a discrete variable 

and its discrete finite Fourier transform, namely 

that the absolute values of their expansion coeffi- 

cients in these eigenvectors are the same.  We 

suggest a canonical form for such functions (with 

respect to the finite Fourier transform) in which the 

transform can be done by inspection. 
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1.  Introduction 

Popularization of the fast Fourier transform 

algorithm by Cooley and others (for example, Cooley 

et al., 1967) has caused renewed interest in the 

theory of the discrete finite Fourier transform, 

which was neg]ected during the years 

when statisticians preferred to calculate the spectra 

of digital time series via mean lagged products.  In 

this paper we discuss some properties of the eigen- 

vectors of the matrix that performs the discrete 

finite Fourier transform. 

For continuous time we have the Fourier trans- 

form pair: 

X(f) = f   x(t) e-27fi£t dt 

x(t) X(f) e+27Tift df 

(1.1) 

(1.2) 

provided these Integra]s exist.  The corresponding 

discrete finite Fourier transform pair is: 

N-l 
Xv = N'15  I  x. e' 
K      j = 0  J 

2Trijk/N k = 0, N-l  (1.3) 

.   =   N"1*    I     Xv  e+27riJk/N j   =  0,   N-l     (1.4) 
J v a n      K 

 ^^MMHI    .     ..._ -  -       ■    - ■ ' - 
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for which the completeness-closure relation ii 

,-1 N-l 
N [ exp[2Trij(k   -   k')/N] = «J. 

j=0 K' 
(1.5) 

where 

1  when k   =  k'   (mod N) 

0  otherwise 
(1.6) 

The relation between the discrete finite Fourier 

transform and the continuous-time Fourier transform 

is (see, for example, Cooley et al., 1967) that if 

x(tj and X(f) are a continuous-time Fourier transform 

pair, then xp(At) and Xp(kAf) are a discrete finite 

Fourier transform pair, where 
00 

*p(JAt) = T N*   I x(JAt + mNAt)     (1.7) 
m=- oo 

Xp(kAf) = I    X(kAf + mNAf)     (1.8) 
m= - oo 

where N is the number of sample points in x and X, and 

T ■ NAt.  The form of (1.7) and (1.8) is obviously due 

to the aliasing in both time and frequency which 

occurs when x(t) and X(f) are sampled. 

We define a matrix W: 

(W)jk = N'*  e-27TiJk/N 

(1.9) 

-2- 
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in order to write (1.3) and (1.4) more compactly in 

matrix notation: 

X = W x 

x = V^X 

where x and X are vectors whose elements are the 

sample values of the data and the transform respectively, 

and the dagger denotes Hermitian conjugation.  W is 

clearly unitary, and it satisfies the equation 

W4 = I 

so that its eigenvalues are X = ^ 1 and +_  i. The problem 

of determining the multiplicity of these eigenvalues is 

equivalent to the problem of evaluating the trace of W, 

i.e., the Gaussian sum 

S(1,N) = N'^ I     exp(27Tik2/N) = N'2 tr(W) 
k=l 

(1.10a) 

(1.10b) 

(1.11) 

the value of which is well known (Erdelyi et al., 1955, 

section 17„6). 

Carlitz(1959)showed that a multiplicity rule for the 

eigenvalues can be derived from the fact that the charac- 

teristic polynomial of W is: 

-3 
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f(M ■ (X - 1)2(A ♦ i)(A ♦ 1)(>4 . 1) 

f(A) = (A - IJU4 - D^N-D 

f(A) = (A2 - i)(X4 - l)^N-2) 

4   .^(N-3) 

kH-l 

f(A) ■ (X ♦ i)(X-" - l)(X"t - 1) 

A simple way to see the multiplicity is to count 

the occurrences of each of the fourth roots of unity 

arc r;d the unit circle in the following way:  For N 

odd, start with +1 and step around counterclockwise, 

counting each root in turn, up to a total of N of 

them - e.g., for N = 5 the eigenvalues are 1, -i, -1, 

+i, 1.  For N even, however, the last occurrence of 

i or -i is skipped - e.g., for N = 6 the eigenvalues 

are 1, -i, -l, +1, i, -i. 

when N=0 (mod 4) 

Nil (mod 4) 

N52 (mod 4) 

NS3 (mod 4) 

-*-'■- -- -     ■ ■ -■- 
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2. The Eigenvectors of W 

It is clear that the eigenvectors of W are those 

functions of a discrete variable which are equal to 

their own discrete finite Fourier transforms multiplied 

by ^ 1 or +^ i.  We can get a set of these from the 

relationship (see Magnus et al., 1966): 

{e-^2 Hk[(2n^t]}e-27Tift dt - i"* {e"7^ Hk [ (2^ f ]}  (2.1) 

where Hjc(x) is the k'th Hermite polynomial 

Hk(x) = (.l)k exp(x2) dk[exp(-x2)]/dxk 

That is, 

2 
u(t)   e-7Tt" Hk[(2TT),5t] 

is a solution of the singular integral equation: 

u(t) e"27Tlft dt = Au(f) 
uo 

with ^ " + 1, + i. 

The functions (2.3) do not exhaust the solutions 

of (2.4), since there are infinitely many solutions 

for A = + 1:  for example, u(t) = sech(TTt)  satisfies 

(2.4) with  X ■ 1, and in fact, if x(t) and X(f) are 

any Fourier transform pair, then 

(2.2) 

(2.3) 

(2.4) 

5- 

■- —■- — \mmim**mmimm 



 w HP -—^"^■^'" mmmm "■""W 

u(t) = x(t) ♦ aX(t) 

is a solution of equation (2.4), with X = a = ^ 1 if 

x(t) - x(-t) and with X - -a =• + i if x(t) = -x(t). 

is a solution of (2.4) with X • ♦ 1. 

From equations (1.7) and (1.8) we see that 

eigenvectors of W which correspond to the functions 

iZ.Z)   are: 

ukrj) -   I     e-^J +mN)2/NHk[(2Tr/N)
J5(j ♦ mN)] 

in=-oo 

where Ujc(j) denotes the j'th element of the k'th 

eigenvector.  In deriving (2.6) we made use of the 

fact that if  x (jAt) is to be proportional to Xp(kAf) , 

then At = Af = N**5. Cooley et al. (1967) state 

(2.6) omitting the Hermite function.  Since HQU) = 1, 

(2,6) is a generalization of their result. 

These functions of j , k,  and N are clearly- 

periodic in j with period N; for even k the functions 

are symmetric about the middle of a period and for 

odd k they are antisymmetric. McClellanand Parks (1972) 

pointed out that this is a general property of the 

eigenvectors of W. 

An easy way to see this general property follows 

from the fact that X = + 1, + i and 

(2.S) 

(2.6) 

-6- 
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K 
where «Sxi   .   is the Kroneker delta defined in equation 

(1.6). 

Thus we have: 

(2.7) 

W col(u0,..„,uN) « ♦ col(u0,...,uN) 

where the sign is positive for A = + 1 and negative for 

X ■ ♦ i. From (2.7) it is clear that 

(2.8) 

u^ =  u 

u^ " -u 
N-j 

j   "N-J 
and 

u N/2 

0 

0 

for A = + 1 and j = 1, N-l 

for A ■ + i 

for A = +_ i 

for A = + i and N even 

We see from (2.1) that the order index k is 

related to the eigenvalues: the functions (2,6) are 

eigenvectors of W with eigenvalues 

(2.9) 

(2.10) 

■ - -- ■' 
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I 

-i 

-1 

i 

for kEO (mod 4) 

k=l (mod 4) 

k=2 (mod 4) 

k=3 (mod 4) 

(2.11) 

In this paper we do not consider other functions 

which satisfy (2.4), for example 

u(j) = I   sech[^r^^,5 (j+mN)] 
m=-oo 

(2.12) 

(2.6) is a sequence of functions which are multi- 

ples of the eigenvectors.  Since there are infinitely 

many functions in the sequence, clearly there are many 

linear dependences.  The functions in any infinite 

sequence associated with a given eigenvalue of W must 

also contain many linear dependences, since the 

multiplicity of the eigenvalue is a bound on the number 

of linearly independent eigenvectors associated with 

that eigenvalue. 

We notice that in the discrete case the property 

(2.5)  also holds true. 

 i _fa-MM.. - ■    ^ 



H^MNBHI  -■ «■■■•»•■■■■■■■PHPW»«^^"^«^ -_ 

There is an interesting relation between the eigen- 

vectors of W and a function which occurs in number theory: 

the Legendre-Jacobi symbol is defined as: 

.2 

l=< 

1 

•1 

0 

when m E z (mod N) ^ 0 

when m = z2 (mod N) ^ 0 

when m = 0  (mod N) 

(2.13) 

where z is an integer (Erdglyi et al., 19S5, section 17.5). 

It can be shown that 

(sHN) 
for N E 1 (mod 4) 

(2.14) 

for N H 3 (mod 4) 

where EJJ  is the vector space spanned by the eigenvectors 

associated with the eigenvalue X. 

■-^-.^.-— ... ......^-J..^.^.. _ _ ..■. .■■J. -   - -- - 
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3.  Some general properties of the eigenvectors of N 

We calculated -he functions (2.6) to twenty 

significant figures for N = 2, 3, ..., 30 and k = 0, 1, 

...,60.  A number of interesting properties emerged 

from the calculations, which led to the following 

general conclusions. 

We consider the even vectors 

k + fk 

and the odd vectors 

{6J0 + 6N-Jo}    J0 3 0'1"-"i'i(N " ! + N23 

{6k  - ök 

N-j JQ = 1.-".Jf(N - 1 - N2) 

(3.1) 

where N2 E N (mod 2) > 0. With these vectors we form the 

following total systems of vectors (which are, however, 

not minimal systemsj in the spaces E^N^: 

I 

cos(27TJ0k/N)  ♦ !,(««    ♦ «5 .  )  e  Bj? 
Jn     IN"Jn      ** 

(N) 

and 
(3.2) 

Hmii  sin(27TJ0k/N) ♦ !,(-6k ♦ 6k.. )e fiW 

These systems contain almost twice as many vectors as the 

dimensionality of E^; orthogonalizing these systems 

separately for each X  it is possible to get a full system 

of orthonormal eigenvectors of W. 

(3.3) 

-10- 
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Consider the vectors with elements jn = 0 from ECN) 

and with element Jü = 1 from B^ Then for any N, 
+ 1 

col(l tUh>   1 1)   e  fifj (N) 

and 

(3.4) 

col(0,  Bl  ? N^,  a2 aN.2,  a^j  . N^)   E B<J (N) 
C3.5) 

where 

ak  =  2  sin(2TTk/N) 

We notice  that nA
(N)   =  0  for  A  =   i  and N =   2,   3,   and 4, 

and that nj[N^   =  1  for 

A=land    N=l,   2,   3; 

A  =   i  and     N =   5,   6,   7     8; 

A  =   -1  and N =   2,   3,   4,   5; 

i  and N =   3,   4,   5,   6. 

•11- 
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Consequent]/  the  following  are  identities  for  the   functions 

U(N). 
uk    * 

u4p+30)   ■   0 N  =   1,   2,   3,   4 

"^(»/u^W ■ (l -nV1 
N  =   2,   3 

^y^Um • ci - MV1 
N  =   2,   3,   4,   5 

u4p^lUJ   .   2  sin(2Trj/N) 

u^p^Cl)        2  sin(27T/N)   ♦  N 
N  =   3,   4,   5,   6 

and j   E  1   (mod N) 

(N) u*- ^  en 
4p^3uj   =   2   sin(2TTJ/N) 

u^^CD        2  sin(2Tr/N)   -  N 

where p  is  a positive   integer. 

N =  5,   6,   7,   8 

and j   =  1   (mod N) 

-12- 
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We also notice that a linear combination of eigen- 

values always exists such that 

I    a, uiN) = col 
kii k ~k 

i, L » • • •       u 
+ XN5      1 + XN5 

C3.6) 

where X =  1 for M = n  and ksO (mod 4) 

X = -1 for M = n' and kH2 (mod 4) 

and m and n" are the number of positive and negative 

eigenvalues respectively. 

Since nj ^ = 2 when X = 1 for N = 4, 5, 6, 7, and when 

X = -1 for N = 6, 7, 8, 9, a number a can be found for the 

above combinations of X and N and for arbitrary linearly 

independent ul *   and u^  , where k = m = 1 - X (mod 4) such 
K TU 

that 

u (N) (j)  + au^O) 

u^N)(0)   +  a u^COD        1  ♦   XN 

From   (2.8)  and   (3.3)  we have  full bases   in E^  '! 

(3.7) 

-13- 
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(5) "   {e1  =   (i   +   £,   1|   lt   lt   l)t 
'■2  =   (0.   1.   -1.   -1.   1)} 

:(5)   _ 
'-1 "  fej =  (1  -   S*5,   1.  1,   i, 1)} 

(5)  _ 
(0,  at,  1,   -1,   -oJ 

where a±  =     2^(3   -   S^)"2 ♦  2(5   -   5^] 

It  is  of  interest  to display a  few of  these results 

explicitly: 

a.   For  all  integers  p  and for j   =  i^   2,   3     4: 

y    e-Tr(j + 5m)2/5  „ rej u 

00 

I    e 
in=-oo 

bTim 
H2+4p[5m(27T/5^] 1   -   /T" 

(3.8) 

•14. 
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b.  For all integers p and for j = 1 and 2: 

m=_oo 

J    e-7T(j-3m)   /3 H2+4p[(j*3m)(2TT/3)^] ^ 

-     _TZ7 
I    e 

m=-oo 

3lTm    H2 + 4p[3m(27T/3)'2] 1   -   ST 
(3.9) 

c.   For all  integers  p  and  for j   =  1  and  2: 

l    e^Ü+3m)2/3 H     [(j+3m)(2Tr/3)ls] 
m=-0°  =   — 

00 ^     2 i. 
I    e"3™1    H4   [3m(21T/3)''l 

m=_oo 

1 + /T" 

(3.10) 

4o  Miscellaneous  observations prompted by the numerical 

calculations 

We have not  investigated the  linear dependence of the 

functions   (2.6)   beyond noticing that  for N=2  through  8  the 

eigenvectors   corresponding  to  a given  eigenvalue  are not 

only linearly dependent, but parallel or antiparallel;   that is: 

(N) (N) uJ^U)   = 1 F(N,k)  u£'4p (j) (4.1) 

It  appears   that  in  certain sets,  e.g.,  k=l   (mod 4)   for 

15- 
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N = 6 and 7, and for k = 1 (mod 4) for N = 4, eigen- 

vectors with k prime tend to be antiparallel significantly 

more often than those with k composite, much more than 

the distribution of primes in the interval 0<k<60 would 

suggest. 

For primes modulo 8, with the single exception of 

k53 (mod 4), the eigenvectors with kE5 (mod 8) and k=7 

(mod 8) are antiparallel to the vector for k=0  about four 

times as frequently as the eigenvectors with k=l or 3 

(mod 8). In the exceptional case the 4:1 ratio is reversed. 

5. Relationship to theta functions 

Writing out the quadratic factor in (2.6), we have: 

uk(j) = e-J2^  I    a"*"2* " 2^ Hk[(2^(j ♦ mN)] 
m=-oo K (Sol) 

Comparison with the theta function 

e3(z,t) = I   e 
m=_oo 

•Trm it + 2miz 
(5o2) 

(Bellman, 1961) shows that the eigenvectors (5.1) are a 

generalization of these theta functions for the particular 

arguments t = iN and z = iri j „ As such they may be of 

mathematical interest. 

-16. 
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6. Generating functions for the eigenfunctions 

The generating function for the Hermite polynomials 

is : 

2xz z = I H (x) fa 
k=0 

(6.1) 

(see, for example, Szegö, 1959). Carlitz has pointed out 

(personal communication, 1970) that it follows from (2.6) 

and (6.1) that the generating function for the eigenvectors 

u£N)(j) is: 

+ 00 

I    MJ)rT = eZ     I      exp{-TT[(j+mN)-z/2N77]   /N} 
k=0 K 

m=-°o 

(6.2) 

which can be put in the form : 

k=0 K  K,      ü 
(6.3) 

7. Expansion of arbitrary vectors in the eigenvectors of W 

-x2/2 From the completeness of the functions e  '  H, (x) in 

the interval (-•, «•) it follows that the system 

{u, , k=0, _+ 1,...} is complete. Thus any arbitrary data 

•17- 
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vector x can be expanded in terms of these eigenvectors: 

N 
* =  I  av " 

k=l k ^k (7ol) 

where 

ak = * Sk (7,2) 

Now take the finite Fourier transform of both sides of   (1.10a): 

X = W x = W 
N N 

k=i lk ^ = kii 
a^ w ^ = Ji Xk ^ ^ 

N 
I (7.3) 

where X is the finite Fourier transform of x. Now since 

^k 
:= ^. 1 and + i, we see that there is a remarkably simple 

relation between a periodic function of a discrete variable 

and its discrete finite Fourier transform: the expansion 

coefficients of both in terms of the eigenvectors of W 

have the same absolute value, and x and X differ only in the 

sign and/or the realness of some of the terms in the expansion. 

Thus there may exist for discrete time series a canonical 

form (with respect to the finite Fourier transform) in which 

tiie transformation can be done by inspection. It would 

therefore be of interest to find efficient algorithms for 

computing the eigenvectors (2.6) and the expansion coefficients 

-18- 
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(7.2);   it would also be of practical  importance to re-examine 

digital  data processing procedures   for time  series  expressed 

in this  canoni:al form. 

A similar statement  can be made  for the  functions   (2.3) 

and the  continuous-time Fourier  transform  (1.1)-(1.2). 
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